

Florida Solar Energy Center • November 1-4, 2005

Ceramic Membranes of Mixed Ionic-Electronic Conductors for Hydrogen Separation

Mohamed Elbaccouch

Florida Solar Energy Center University of Central Florida

Project Start Date: March, 2004

Florida Solar Energy Center • November 1-4, 2005

Research Goals & Objectives

- □ Develop high temperature dense ceramic oxide membranes with mixed ionic-electronic conductors for hydrogen separation.
- Achieve appreciable hydrogen permeation flux using both disk-type (1-3 mm thick) & thin film-type (1-3 μ thick) strontium cerate oxide membranes doped with terbium.
- Enhance the limited hydrogen permeability data base & asses the viability of perovskite materials as hydrogen-permeable membranes.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

	Clean product (100% pure hydrogen) & does not require external electrical power.	
	Low-cost compared with Pd membranes.	
	Simple & flexible compared to pressure swing adsorption (PSA)	
	Reduce down stream processing & eliminate hydrogen loss in PSA, CO shift, & reformer.	
	Membranes can be interfaced easily with various industrial unit operations.	
Relevance to NASA		
	On site hydrogen separation & production for NASA-KSC using inexpensive & light weight materials.	
	Membranes materials can be used for Mars exploration, fuel cells, & other relevant space programs.	

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule, & Deliverables

☐ Budget: \$190,000

Schedule:

1st quarter: Development of hydrogen permeation set up.

2nd quarter: Fabrication of disk & thin film geometry membranes.

3rd quarter: membrane characterizations & development of gas-tight

seal between membrane & processing unit.

4th quarter: Generation of hydrogen flux data.

□ Deliverables:

- 1 Hydrogen flux as a function of temperature, water vapor, & hydrogen partial pressure.
- 2 Preliminary results on effect of nickel deposition on enhancing hydrogen flux.
- 3 Spin coating of dense thin membrane films.
- 4 Development of porous substrates for thin film deposition.

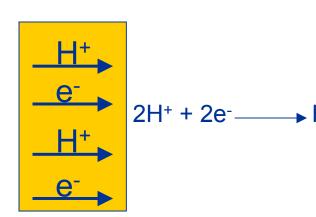
Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

u	the NASA-KSC.
	Support the growth of the hydrogen economy.
	Ion transport membranes could enhance the widespread use of hydrogen.
	Ion transport membranes can eliminate the costly, conventional hydrogen-manufacturing facilities.
	Direct applications in Fuel cells, sensors, & Mars mission.
	Existing permeation set up can be used for oxygen separation.

Florida Solar Energy Center • November 1-4, 2005

Ion Transport in Perovskite Structures

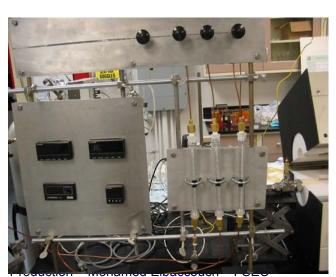

Kinetics

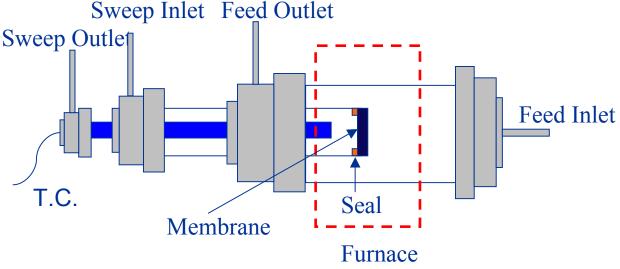
- Gas-solid interfacial rxn.
- Ion migration through solid lattice.
- Solid-gas interfacial rxn.

Hydrogen Flux

 $H_2 \longrightarrow 2H^+ + 2e^-$

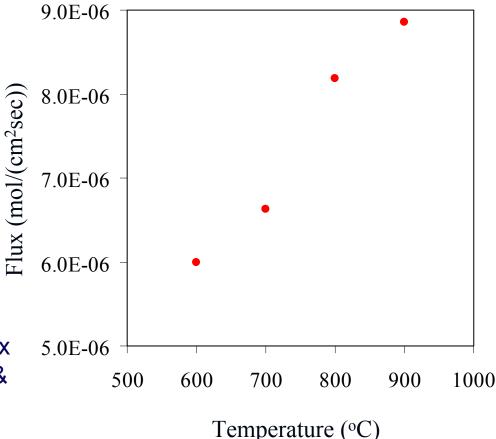
- □ Temperature.
- Hydrogen partial pressure.
- Water vapor.
- Membrane thickness & surface area.
- Doping type & percentage




Florida Solar Energy Center • November 1-4, 2005

Hydrogen Permeation Set Up

- ☐ Up to 1200°C & atmospheric pressure.
- □ Disk-type & thin film-type membranes.
- Membrane surface area scale up to 1.5 in².
- ☐ Hydrogen & oxygen flux data.

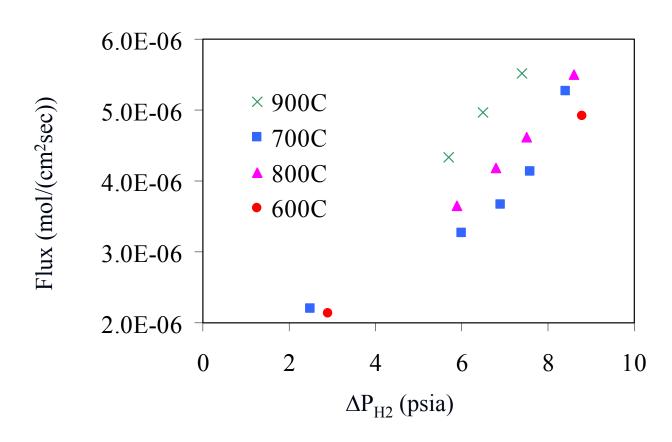

Florida Solar Energy Center • November 1-4, 2005

Results: Temperature Dependence of Hydrogen Permeation Flux of $SrCe_{0.95}Tb_{0.05}O_{3-\delta}$

- Hydrogen flux increases linearly with temperature.
- □ Operating temperature above 600°C.
- Sealing limits upper temperature to 900°C.

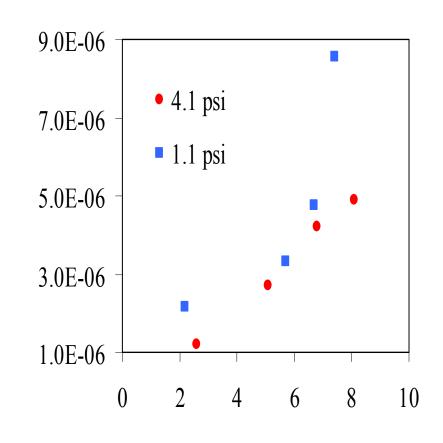
Synthesis of Polymeric Precursor

- Metal nitrates dissolved in citric acid based solution.
- Polymerization process forms complex chelating mixture between citric acid & metal cations.
- ☐ Sequence of heating & drying steps.



Florida Solar Energy Center • November 1-4, 2005

Results – Influence of $\triangle PH_2$ at Different Temperatures Under Dry Conditions on Hydrogen Flux of $SrCe_{0.95}Tb_{0.05}O_{3-\delta}$

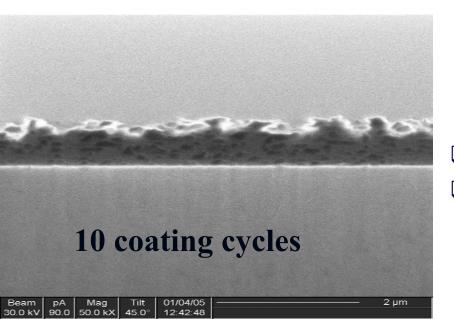


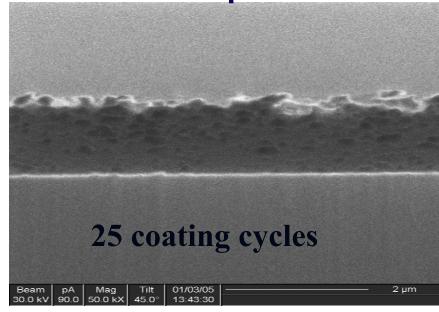
Florida Solar Energy Center • November 1-4, 2005

Results – Influence of Water Vapor Pressure & Ni Deposition on Hydrogen Flux of $SrCe_{0.95}Tb_{0.05}O_{3-\delta}$

- □ Hydrogen permeability decreases with increasing water vapor pressure due to increase in P_{O2}.
- Ni enhances hydrogen permeability by enhancing catalytic activity at solid-gas interface..

membrane	H ₂ flux mol/(cm ² sec)	thickness mm
$SrCe_{0.95}Tb_{0.05}O_{3-\delta} + Ni$	1.12x10 ⁻⁵	2.3
SrCe _{0.95} Tb _{0.05} O _{3-δ}	8.18x10 ⁻⁶	1.5





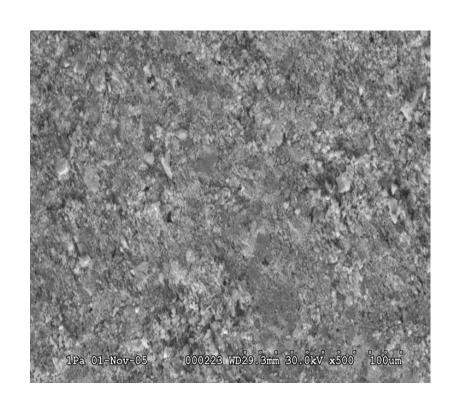
Florida Solar Energy Center • November 1-4, 2005

Results – SEM Surface Morphology of Dense $SrCe_{0.95}Tb_{0.05}O_{3-\delta}$ Thin film Spin-coated at 3000 rpm for 20 s

- Ethylene glycol-based polymeric precursor.
- Non-porous silicon-based substrate.
- Precursor spin-coated on substrate & converted to dense polycrystalline metal oxide films.

- Low sintering temperature (400°C).
- □ 0.2-2 µm film thickness can be produced by controlling the number of spin-coating cycles.

Florida Solar Energy Center • November 1-4, 2005


Results – SEM Surface Morphology of 2mm Thick Porous Substrate Suitable for Spin Coating Thin Membrane Film $SrCe_{0.95}Y_{0.05}O_{3-\delta}$ + 10 wt% Carbon Black

Synthesis of Porous Substrate

- □ Ultrasonically mixing $SrCe_{0.95}Y_{0.05}O_{3-\delta}$ with carbon black.
- □ Porosity created as carbon black is combusted at 600°C & 2 °C.min⁻¹ for 2 h.

Parameters to be Optimized

- Carbon black content.
- ☐ Sintering temperature.
- Heat treatment time.

Florida Solar Energy Center • November 1-4, 2005

Future Plans

	rate hydrogen permeability data for disk -type membranes.
Optimize paran	neters influencing porous substrates.
•	gen reactors for hydrogen permeability metry membranes.
☐ Finish up the in conductivity me	npedance spectroscopy set up for easurements.
☐ Generate hydro impregnation to	ogen permeability data with Ni echnique.
	-DOE project on H ₂ purification & hermochemical water-splitting cycles abo, SAI).

Florida Solar Energy Center • November 1-4, 2005

Proposals & Publications

Proposals:

"Development of Mixed Ionic-Electronic Conducting Thin Membrane Films (1-5 μ thick) for Hydrogen Separation", NSF-SGER - Pending

Publications:

- M. Elbaccouch, S. Shukla, N. Mohajeri, S. Seal, and A. T-Raissi, "Microstructural Analysis of Doped-Strontium Cerate Thin Film Membranes Fabricated via Polymer Precursor Technique," *Langmuir, Submitted.*
- M. Elbaccouch, S. Shukla, S. Seal, and A. T-Raissi Ali, "Hydrogen Permeability Data of Ceramic Oxide Membranes," The 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, FL, USA, January 22-27, 2006.
- S. Shukla, M. Elbaccouch, S. Seal, and A. T-Raissi, "Polymer Precursor Route to Perovskite-Type Tb-Substituted SrCeO₃ Thin Membrane Films and Effects of Microstructural Evolution," The 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, FL, USA, January 22-27, 2006.

Florida Solar Energy Center • November 1-4, 2005

Acknowledgments

This work is supported by NASA-Glenn Research Center. Also, we thank the Materials Characterization Facility at the University of Central Florida.

Thank you